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Abstract. We consider the Kapitza conductance due to absorplion and emission of
phonons Ly a lossy surface layer which has complex elastic constants and/or complex
mass density,. We find a series connection of two heat resistances, one between the
layer and the solid, and another one between the layer and the hefium. A propagator
matrix formalism is used to caiculate the phonon absorption coefficients, and hence the
Kapitza. conductance, as a function of angle, frequency and layer thickness in the limit
of continuum acoustics with anisotropy. The resuiting conductance is large enough to
account for the Kapitza anomaly. Most experimental details can be explained if the
heat resistance on the solid side is assumed (0 dominate over that on the helium side.
Theoretically we find that both are of the same order at least.

1. Introduction

The Kapitza resistance for heat transport between liquid helium and solids has
been a topic of discussion for more than fifty years [1]. The transport by acoustic
phonon transmission proposed by Khalatnikov [2] fails to explain the observed large
thermal conductance [3] and the strong transmission of phonon pulses [4,5]. This
fact is commonly referred to as the Kapitza anomaly. Haug and Weiss [6] and,
independently, Peterson and Anderson [7] (HWPA) suggested that the Kapitza anomaly
may be accounted for by complex elastic constants of the solid, which provided a
phenomenological model for scattering or absorption of phonons. As a consequence
of this, the total reflection of the helium phonons at angles outside the critical cone
is no longer complete because the evanescent waves in the solid are attenuated.
Although this effect seems to be small it leads to a very effective additional channel
of heat ransfer because of the large density of states in helium.

This model was qualitatively confirmed by angular distribution measurements in
helium by Sherlock and co-workers [8] who observed the critical cone neat normal
incidence and an additional background at larger angles which carried most of the heat
flow. But there were still two major objections to the HWPA model: (i) The imaginary
parts required to produce a sufficiently large Kapitza anomaly were comparable to the
real parts of the elastic constants. This appeared to be unphysically large in view of
ballistic phonon propagation cbserved in the pulse experiments. (ii} The amplitudes
of the evanescent waves depend on the impedance mismatch. Therefore the resulting
Kapitza conductance should depend on the helium pressure, on solidification [9, 10},
on the replacement of the helium by H, D [11], or even Ar [10}, and on the phonon
frequency [5]. None of these effects could be found experimentally.
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New experiments have since shown that the Kapitza anomaly is absent at clean
surfaces prepared in situ either by cleaving [12,13] or by laser annealing [14]. This
means that the anomaly is caused by surface imperfections, presumably adsorbed
water and residual gases. In further experiments the clean surfaces were re-
contaminated in a controlled manner by gold atoms [15], and it turned out that
less than a monolayer was sufficient to restore the Kapitza anomaly. Similar results
were obtained with a coverage of water molecules {16].

These coverages were observed to cause a change from specular reflection to
more diffuse scattering at the surface without adjacent helium. With helium, the
diffuse part was transmitted while the specular part remained unaffected. The same
observation had been made on ‘real’ surfaces by many authors [17, 13]. So the Kapitza
anomaly is clearly related to surface scattering or absorption, and the scattered or
re-emitied phonons seem to go preferentally into the helium.

The HWPA model can be adapted to these observations by modelling the adsorbate
as a thin layer of an effective lossy medium on the surface. Although this is a crude
simplification it should be not too far from reality as long as the mean distance
between adatoms is less than a phonon wavelength. For such a disordered layer it
seems no longer unphysical to assume a rather high absorption or scattering strength,
so that real and imaginary parts of the elastic constants may indeed be of the same
order. Moreover, only a thin layer is required for the Kapitza anomaly to occur
because of the short penetration depth of the evanescent waves in the solid. Even if
the layer is thinner than the penetration depth, we still find appreciable absorption,
see section 9. So difficulty (i) can be removed.

As an alternative model, Kinder [18] had made the specific assumption of two-
level systems (TLS) on the surface, similar to those observed in glasses [19]. These
TLS were assumed to interact with the helium, not via evanescent waves, but directly
by the deformation potential. The heat exchange due to absorption and re-emission
of phonons of the solid and of the helium by the TLS was strong enough to agree
with experiments. The same absorption and re-emission couid also be responsible for
the apparent surface scattering.

A key argument was that even a small deformation potential allows a very fast
relaxation into the helium because of the large density of states. If this relaxation
is faster than that into the solid, the diffusely re-emitted phonons will be ‘sucked’
into the adjacent helium, as observed in the pulse experiments. Also, there will be
a bottleneck between the TLsS and the solid which dominates the heat transfer. This
provides a natural explanation for difficulty (ii), the observed independence of the
Kapitza resistance from all helium properties.

Later we have pointed out that the TLS could be described by a lossy surface layer
in the same way as discussed above [20], if the expression of Jickle e a! [21] was used
for the imaginary parts of the elastic constants. In fact, the only remaining difference
from a layer—-HWPA mode] was the direct interaction with the helium, So the HWPA
mode] must yield a similar bottleneck to the TLS model if the indirect interaction via
evanescent waves is strong enough.

In the present paper we wish to show that this expected bottleneck is a general
consequence of backscattering which had been neplected by HWPA [6]). If we take
backscattering into account we find essentialy two Kapitza resistances in series, an
outer resistance between the helium and the layer, and an inner resistance between
the layer and the bulk solid.

The properties of both resistances ¢an be found by calculating the absorption
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coefficients as functions of angle, polarization, frequency, and layer thickness. For this
purpose we have used a propagator matrix formalism treating the two acoustic half
spaces with the lossy intermediate layer exactly. We present numerical results not only
for the case of complex elastic constants corresponding to defects with deformation
potential coupling, but also for the case of complex mass density corresponding to
mass defect scattering.

We find that the inner resistance between the layer and the solid has properties
which agree well with the existing experiments. So this indeed seems to be the
bottleneck. On the other hand we also get the same magnitude for the outer
resistance. So backscattering should clearly not be neglected, but the evanescent
wave absorption may not be the only interaction mechanism with the heliom.

2. Angular distribution of scattered or re-emitted phonons

The complex elastic constants are a macroscopic model for various microscopic
processes which derive energy from an incident wave by scattering or absorption. This
energy is scattered or re-emitted into other modes whose frequencies may be the same
(scattering) or may have changed (absorption/re-emission). In our present context
these modes are the phonons of the bulk solid on one hand, and, via evanescent
waves, the phonons of the helium on the other hand. The rotons will be neglected for
simplicity. The energy derived from an incident helium phonon does not necessarily
contribute to the heat transfer because it has a finite probability of being scattered
back into another helium phonon. Similarly, phonons absorbed from the solid side can
be backscattered into the solid. To evaluate the backscattering process quantitatively
we nced not only the absorption but also the emission probabilities for all modes of
the helium and the solid.

The scattered or absorbed fiux varies across the thickness of the layer, particularly
in the case of evanescent waves. Therefore, in principle, the contribution to the
backscattered flux should be calculated for each volume element separately and then
summed over these elements. In practice, only the average of all modes of the solid
and the helium together is relevant to the problem, as will be derived in the next
section. This average varies only weakly, however, as long as the bottleneck on the
solid side is not extreme. Thus, the numerical results are not significantly altered,
and we have treated here the absorption of the layer as a whole for simplicity.

Our macroscopic approach allows us to calculate only the energy flux absorption
of the layer for all phonon modes of the solid and the helium. The emitted flux
distribution can be obtained in the following way.

The use of macroscopic complex elastic constants and mass density is only
meaningful if the response of the medium is sufficiently local. This implies that
the underlying microstructure causing the scattering or absorption has a characteristic
length scale which is shorter than the phonon wavelength. Likewise the Fourier
transform of the microstructure has a distribution which is broader than the length of
the phonon wave vector. This means that momentum selection rules are not obeyed
during the scattering or absorption processes. There remain only weak polarization
selection rules which can be neglected in the present context as we do not expect
any observable consequences. So the pattern re-emitted at a given frequency has
always the same angle and polarization dependence, regardless of which phonon had
been absorbed. Thus, the total flux pattern at this frequency, re-emitted from all
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absorbed phonons in thermal equilibrium, is also the same. But this total pattern is,
by detailed balance, the same as the absorption pattern. So the flux re-emitied at
a given frequency has always the same dependence on angle and polarization as the
flux absorption at the same frequency.

Before we actually calculate the flux absorption we wish to discuss the
consequences of the phonon backscattering for the Kapitza conduction.

3. Kapitza conduction including backscattering

The energy flux absorbed from a single incident phonon with wave vector & is given
by

qgc = (hwk/ﬂi)”;_!_kAL (1

where the index i stands for either helium (h) or solid (s), &; is the normalization
volume, v; 1 & 15 the normal component of the group velocity, A is the flux absorption
coefficient of the layer, and % is meant to include both wave vector and polarization
index.

In general, the flux absorbed at frequency w is re-emitted in a distribution
flw, w") of frequencies w'. Conservation of flux requires

/dw' flw,w) = 1. (2)

As discussed in the previous section, the angular and polarization distribution of
the phonons re-emitted at w’ is the same as that of the flux absorption at w'. So
the normalized angular and polarization distribution re-emitted into medium j at

frequency w' is given by g, /[W,(w')+ W,(w’)], where we have used the abbreviation

Wi = 3 qho 3)

wyrr=w!

The symbol 3, _.. denotes the summation over the surface of constant frequency
«', s0 that fdw'}, _ ., =3 . For the evaluation see sections 7 and 8.

Thus, the flux pattern re-emitted into medium j due to a single phonon of
frequency w incident from medium i is

Vi = G F(wia g ) ghe / IWy(wie ) + Wy(wye)]. (4)

In the Kapitza problem the incident phonons have Bose-Einstein distributions,
n(w, T;), and the net heat current due to all phonons absorbed from the helium
and re-emitted into the solid, and vice versa, is obtained by summation of (4):

n(w, Ty ) Wy(w) Wi(w') — nlw, T) W (w) Wy (') ©)
Wy(w') + W(w') )

Q= /dwdw'f(w, w')

While the W;(w) will be calculated later in this paper, the distribution function
f{w,w’) is not known in general. But we can discuss two limiting cases, clastic
scattering on one hand, and full inelastic thermalization on the other.
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In the first case of elastic scattering we have simply f{w, w') = &(w,w’), s
that, for |T, — T;| <« T,

_ Wi (w)Wlw) onl(w,T)
0= [t S i er (BT - ®

For simplicity we have assumed that the absorption coefficients Al are independent
of temperature. The generalization 15 obvious. We see that the heat flux is essentially
determined by two Kapitza resistances in series, one for the helium side and one for
the solid side.

In the second case the re-emitted spectrum is assumed to be fully thermalized
to an intermediate temperature T;. The flux re-emitted into each outgoing phonon
mode is then

n(w', T;)dh Q)

and the re-emitted phonons have no memory of the incident frequencies, ie. the
distribution function f(w, w’) = f(w') does not depend on w. By summing (4) over
all incident phonons of both half spaces and comparing the result with (7) we find

(') = ne!, TYWi(w') + Wy(w")] / / desfre(w, Ty) W) + n(w, T Wy(w)].
' (8)

In steady state, 7, adjusts itself so that the flux is conserved, that is, equation (2)

holds. So we obtain an implicit equation defining T, by integration of (8) with respect
to w’. For |T, — T,| « T this equation can be easily solved:

T, J dw Wy(w)9n(w, T)/OT + T, [ dw W,(w)dn(w, T)/8T

= Jdw (Wy(w) + W(w))dn(w, T)/3T Y]

Using (9), (8) and (5), we get for the net heat current in the case of full thermalization
after some algebra

[fdw Wh(w)an(w,T)/BT} [fdw Ws(w)an(w,T)/BT]

Q= [ (Ty - 7). (10)

[ dw Wy(w)dn(w, T)/8T] + [fdw W (w)on(w, T)/BT]

Here we have a true series connection of an inner and an outer Kapitza resistance,
while in the case of elastic scattering, equation (6), the series connection is made for
each frequency separately.

If one of the resistances is much larger than the other, it will dominate the overall
Kapitza resistance. Therefore, the inclusion of backscattering leads to the remarkable
fact that any changes on the helium side have no influence if the resistance of the
solid side dominates. To examine whether this is really the case for our present
model of coupling by evanescent waves we must explicitly calculate the absorption
coeflicients. We used a concise method to solve the acoustics problem which will be
presented in the next section before discussing the various numerical results.
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4. Acoustics in layered anisotropic media

Anisotropy of crystals and focusing effects play an important role in all phonon
propagation experiments. Therefore we wish to calculate the absorption coefficients
of the dissipative layer for anisotropic media of arbitrary surface orientation. For
this purpose we use the propagator matrix approach which has been developed in
seismology [22]. Because we are applying it here to a phonon problem for the first
time, we shall give a brief outline.

We start with the Fourier transform of the homogeneous equation of motion for
each medium, the solid, the layer, and the helium:

- pwiu; = ik, i, j=1,2,3 (11

where p is the mass density which may be complex, v; is the displacement vector, k;
is the wave vector, and 7;; is the stress tensor. The index for the different media 1s
omitted here. We adopt the convention of summing over repeated indices. Hooke’s

law for each medium is
i = ey kg (12)

with the elastic constants c¢;;;, which may in general be complex as well. The parallel
component of the wave vector is conserved at the plane boundaries of the layer.
Therefore the wave fields in each of the three media will be linear combinations of
solutions with the same &,. This &, must always be real everywhere, because it js
real for the incident wave. Traditionally, one finds solutions of (11) and (12) for a
given ky by eliminating ail components of 7;;. This yields the Christoffel equation
whose determinant is a sixth-degree polynomial in %, , the normal component of the
wave vector. In principle, the zeros of the polynomial can be found. In practice, the
coefficients of the polynomial fill pages with complicated expressions which are not
well suited for numerical calculations [23]). It is much more convenient to transform
the task into an eigenvalue problem.

This can be achieved by eliminating only the components of r;; with 7, s =1, 2
while keeping the normal stresses 5, ¢ = 1,2,3, as independent variables. Thereby
we have chosen the z, axis as the surface normal. This implies &y, = 0 and
k,, = k;, = 0. Then one obtains from (11) and (12}

— pwtuy = —iky; e U + kip ) + ik a7 (13)
In addition, there remains for the third component of (12)
Tiz = ey (R + kg (14)

Together, (13) and (14) form a set of six homogeneous linear equations for the six
variables u; and ;. We introduce the motion-stress vector [22]

—iwy
—iwu,
N | s | (e i=1,2,3
(f:) = T3 | [ Ti-33 ] i=4,5,6 (13)
T

T33
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and collect all factors of &, on the right-hand side. Then (13) and (14) take on the
form

Aiif; = By fis, hi=1,...,6 (16)

where we have introduced the slowness s = g /w. The coefficients are given by

i=12,3 j=4,56
) = —pﬁ,;j + Cik{jsllksl“ ¢ 7 = 1,2’3
(Aiy) = { €i-3,3k5 S|k &;; i=4,5,6 a7
i=123 j=4,56
) = | TCikai Spk 55.;’—3] i=1,2,3
(53;) [ —€;_3,33) 1 =4,5,6. (18)

Here we have applied the notation introduced in (15) for columns and rows. Equation
(16) is a generalized eigenvalue problem which we solve directly by a library routine
(iMsL). This has numerical advantages over solving the normal form

(BN Ajpfi = frsy- (15)

The six eigenvalues s, , are the intersections of the line of constant s with the
slowness surface, as indicated in the inset of figure 1(a).

Some of the s, , may be complex conjugate at larger sy, leading to
inhomogeneous, evanescent waves. With losses, all s, , have finite imaginary parts.
The eigenvectors corresponding to each s, , contain the particle velocities and normal
strains of this mode. Remarkably these are the quantities conserved in the boundary
problem which we shall discuss in the next section. It will be convenient to arrange
all six eigenvectors as the columns of a matrix E;, and to normalize each column so
that

E‘lza + E%a + E??a =L (20)

For the special case of an isotropic medium, £, can be written down explicitly. We
restrict ourselves here to the case of cy = 0, appropriate for liquid helium:

a=1,...,6
S[II s 0 8”1 s 0
A SE
b _ 513 —$13 s
El,=v o 0 o 0 0 0 t=1,...,6. 21
g 0 0 0 g 0
-2 00 —-p 00

Here, v = 1/s = /¢, /p is the phase velocity in the liquid, and s,, =
\/sz—(sﬁl+sﬁ2). The columns with o = 1 and o = 4 are the incoming and

outgoing longitudinal waves while columns 2, 3, 5 and 6 represent the degenerate
transverse waves, Equation (21) defines the boundary problem of the liguid
completely, including the so-called Khalatnikov boundary conditions. -
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5. Calculation of the absorption and transmission coefficients

Now that the eigenvalue problem is solved for given s, we obtain the general wave
field in each medium as a linear combination of the corresponding eigenmodes

Ji(z) = Byp explivs ) o z)w, = BigAnp(2)wyg @2)

where wj are the amplitudes of the eigenmodes in the linear combination and
Anp(z) =6 gexp(iws | ,2) s the so-called phase matrix [22].

The motion-stress vector f must be continuous across the boundares. We
introduce the indices s, |, and h for the solid, the layer, and the helium, respectively,
and we denote the boundaries by z = z, and z = z,, so that the layer thickness is
d = z, — z,. Then we can write down the boundary conditions

Efa Abp(2)wh = Ely A p(z)wy (23a)

ElaAup(z)wh = Eb AL (2)w). (23b)
Eliminating the amplitudes of the layer, w},, from (23a) and (23b) yields

B AL g(2)wh = Pli(z, - 2) B} Agp(zy)wh 24
where we have used the propagator matrix of the layer defined by
Pz, — 2) = EL AL y(2)A 5 (z) B = B, exp(iws ) EL]" (25)

The same procedure can also be applied to multiple layers by multiplying the
corresponding propagator matrices. We have made use of this possibility here to
study the influence of an additional layer of solid helium, as will be briefly discussed
in section 9.

Equation (24) is a linear system which couples the amplitudes of the modes in
both half spaces. They must be sorted for incident and outgoing directions in order
to obtain transmission and reflection coefficients.

Sorting of propagating bulk modes with real s, is done with respect to the sign
of v,,. The simplest way to obtain this quantity in the present context is via the
normalized energy flux of the mode:

Vosw = (/P ) R{E} By 50} (26)

where the summation index 7 runs from 1 to 3, and the E,;, are normalized according
to (20). p, denotes the density of the medium to which the mode belongs. Sorting
of evanescent waves with complex s, is done with respect to the sign of Im{s, }.
Equation (24) can now be rearranged so that the terms with incident and outgoing
modes are placed on the right- or left-hand side, respectively. Further, the phase
matrices multiplying w} and w}; can be omitted because we are interested only
in the absolute values of the transmission and reflection cocfficients. These are
eventually obtained by setting one of the incident amplitudes to unity while putting
all others to zero, and then solving the inhomogeneous linear system for the outgoing
amplitudes. We have done this numerically, simultaneously for all incident modes of
the solid (@ = 1,2,3) and the incident longitudinal mode of the helium (o = 4).
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We denote the resulting amplitude coefficients for transmission or reflection by a,g4
where 8 = 1,2,3,4 indicates the outgoing modes. The corresponding energy flux
coefficients are then given by

I(uﬁ = (pﬁvg.l.g?/pavg.l.o:)taaﬁlz (27)

without snmming over « or 8. The energy flux is conserved if there is no dissipation,

and Z‘;:l I, = 1 can then serve as a numerical test. With dissipation in the layer,
we define the absorption coefficient of the «th incident mode as

4
A, =1-3 K.g. (28)
A=l

To gain insight into the various phenomena, we will give some numerical examples
for the absorption and transmission coefficients in the following sections. First we
concentrate on the s dependence.

6. Dependence of transmision and absorption coefficients on s

It is useful to study the behaviour of the transmission and absorption coefficients as
a function of the parallel slowness, S because it i$ conserved at the interfaces. This
way the effects of mode conversion become more obvious. In all numerical examples
we used p = 0.14 g cm~? and v = 240 m s~! for the liquid helium [24]. For the solid
we have always chosen silicon with p = 2.331 g cm™3, ¢;; = 167.5 GPa, ¢;; = 65 GPa
and c,, = 80.1 GPa [25].

The formalism works equally well for all orientations of the surface by rotating
the fourth-rank tensor ¢;;;:

Ciigl = Riijanoprcumnﬂa, (29)

where the R,.j are the direction cosines between the original and the rotated basis,
and the ¢, .~ are the elastic constants in Voigt's notation which we translate to
tensor indices by the matrix

165
(b)) =16 2 4. (30)
5 4 3

In the exampies of this section we have picked the orientation by the random numbers
(83, 64, 25). On this surface we selected for sy a random angle of —66° with respect
to the projection of the (100) axis on the surface.

For the elastic constants of the intermediate layer we have chosen the same
absolute values as for silicon, but multiplied them by a phase factor, expié, with
tan § = 1. In the case of TLS with a deformation potential of M = 3 eV [26] this
requires a density of states [21] of N(E) = ¢y tan§/2n M2 = 5 x 10* erg~! em~3,
For comparison, a value of 8 x 10° erg~! cm=3 was obtained for vitreous silica from
the low-temperature specific heat [27]. In reality, a disordered adsorbate is probably
softer than silicon and contains more TLS than bulk vitreous silica.
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Figure 1. Acoustic transmission coeficient from silicon into helium as 2 function of
the parallel component of the slowness: () without a lossy layer; (b) with a layer of
dw=1kms~' (d =08 nm at f =200 GHz) and elastic losses (tan § = I). Inset:
corresponding cross section of slowness surface.

Figure 1 shows the transmission coeflicients according to (27) from the solid into
the helium as a function of s for longitudinal (L), fast transverse (FT), and slow
transverse (ST) phonons. The corresponding angle of propagation in &k space can be
found in the inset which we have drawn for the same orientation, with v,, > 0 for
incident waves. The angle in helium is displayed in figure 1(b).

In figure 1(g), the thickness of the layer was actually chosen to be zero. This
means that the absorbing layer is absent, and we dea)l with Khalatnikov's direct
acoustic transmission only. This is interesting in itself because we are studying here
the anisotropic generalization for the first time. Both transverse modes are now
transmitted, as expected. An interesting feature is the sharp peak at (.19 s km—1,
An analysis of the displacements shows that it is due to a pseudo-surface wave. In
the present orientation the peak rises to a maximum of about 40% transmission. In
other directions, it can even rise to 100%. While the phenomenon can be observed by
ultrasonic techniques [28] it does not contribute appreciably to the Kapitza conduction
because the peak is very narrow.

In figure 1(b), the thickness of the layer is finite. In fact, the results depend,
according to (25), only on the product of thickness times frequency, dw, as long
as the loss angle & is independent of w. Here we chose dw = 1 km s™!. This
corresponds, for example at w /27 = 200 GHz, to a thickness of 0.8 nm. A drastic
change has occurred at the pseudo-surface wave which is now so strongly damped
that it causes a dip rather than a peak in the transmission. All other features of the
curves are only slightly modified. Clearly, the layer does not act as a matching device,
since the overall transmission remains small.

While the layer has little influence on the direct transmission, it does lead to
a strong absorption of phonons. The absorption coefficients according to (28) are
plotted in figure 2 for incidence from the solid side. In figure 2(e), we used again
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dw = 1 km s~!, and in figure 2(6) 2 km s~! (16 A at 200 GHz). Near normal
incidence, i.e. sy ~ 0, the absorption is relatively weak, particularly for the thinner
layer of figure 2&). This can be understood as follows.

Absorption Coefficient (%)

\ g5 o o.05 ——
Parallel Slowness (s/km)

Figure 2. Absorption coefficient of a layer with elastic losses as a function of sy for (2)
dw=1km s~! and (#) dw =2 km s~%.

Due to the strong acoustic mismatch to the helium, the surface of the layer is
nearly free, so that the stress is vanishing. Consequently, there is also a node of
the strain for waves at normal incidence. A sufficiently thin layer on the surface is
therefore not exposed to strain and cannot dissipate any energy even though its elastic
constants are complex. However, this argument holds only for normal incidence.
When the wave fronts are inclined with respect to the surface, the phase varies along
the layer, straining it in the lateral direction. This leads to the increasing absorption
at increasing s.

Superposed on this general behaviour are peaks at 0.11 s km~! in figure 2 on
the curves of both transverse modes. At this point the longitudinal mode has its
maximum s, so that its group velocity is parallel to the surface and therefore its
interaction with the layer is strong. This leads also to a dissipation of the transverse
waves via mode conversion at the surface. The peaks have the same positions and a
similar explanation as the halo of ‘critical cone channelling’ observed by Koos e al
[29] in a different context.

The thicker layer of figure 2(b) already shows effects of finite thickness. At normal
incidence there is now significant absorption because the layer feels the increasing
strain inside the solid away from the node at the surface. The effect is stronger for
the transverse waves because of their shorter wavelengths. On the other hand, the
peaks of critical cone channelling are now less significant in comparison with the
overall level. They disappear completely at dw =~ 3 km s~! when the overall level
approaches unity. So the peaks may serve in experiments to estimate the thickness
of the lossy layer.
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The effects discussed so far are specific for elastic dissipation by complex elastic
constants. In the case of a complex mass density, corresponding to dissipation by
mass-spring systems, we encounter a different situation. This is shown in figure 3 for
the thinner layer with dew = 1 km s~! (8 A at 200 GHz), and tan & = 1. Now the
absorption is strong for all angles of incidence, because the complex mass couples
to the large particle velocity near the surface. A similar behaviour is also obtained
for rough surfaces without an adlayer [30]. So a vanishing absorption near normal
incidence may serve in experiments as a specific signature of the elastic dissipation due
to deformation potential coupling of defects and, at the same time, as an indication
that the surface is smooth on the scale of a wavelength.
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Figure 3. Layer with complex mass density (dynamic losses) at dw = 1 km 5~7,

Phonons incident from the helium side are absorbed in the layer via their
evanescent waves. This is shown in figure 4 for (#) elastic and (b) dynamic dissipation,
with dw = 1 km s~!. The overall absorption is quite small, of the order of 10~
for (z) and even weaker for (b). This comes from the large impedance mismatch
between the helium and the layer. Sharp structures are found at small s; near
normal incidence. For a better resolution we have redrawn the curves with the
horizontal scale expanded by a factor of 10, and the vertical scale compressed by a
factor of 25 (the dotted curves). We find two distinct peaks. The smaller one is due
to the pseudo-surface wave seen also in figure 1, and the larger onc is caused by the
genuine Rayleigh mode which has an sy exceeding that of the bulk modes. Note that
the peak positions in traces (@) and (b} are slightly shifted against one another, due
to the different method of attenuation.

For larger sjj» near 2 s kim~! on the normal scale of the traces, there is a hump
where position depends on dw and on 5. An inspection of the wave field shows
that this is a thickness resonance of the oscillatory part of the evanescent wave which
arises from the imaginary parts of the elastic constants or the density.

The peak at the largest sy, near grazing incidence, appears only in the absorption
coefficient. When multiplied by v,, to yield the flux according to (1), a constant
course results which eventually falls to zero at 90°. This compares well with the
experiments by Sherlock et al [8] who found a nearly constant flux up to angles of
80° at the lowest heater temperature of 0.9 K.

The s dependence is not sufficient for analysing experiments with angular
resolution in the solid. In this case the Kapitza pattern must be translated into
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Figure 4. Absorption coefficient of phonons incident from the helium for (@) elastic and
(b) dynamic losses. Dotted curves are rescaled as indicated. The peaks are due to the
pseudo-surface wave and the Rayleigh mode.

position space, that is, the phonon focusing effects must be taken into acount. The
resuiting flux pattern on the solid side wifl be considered next.

7. Energy flux pattern including focusing in the solid

An incoherent phonon source, like a heat pulse generator, a tunnel junction, or a
laser focus, emits phonons into a crystal with v, pointing away from the source. For
a given frequency, the occupation numbers n{w) of all & states and polarizations are
approximately equal. Then the flux absorbed by a dissipative layer at the far surface
of the crystal in a surface element AzAy at a position z, y is

I(ft, y)AKBAy - Z Z n(wk) gzk‘Aa (31)

@ keB(z,y)

The & sum is restricted, so that the surface element is hit, to a range B(z, y) defined
by the conditions = v, D/fv,, < z+ Az, and y S v,, D/v,. < y+ Ay where
D is the crystal thickness, and v, is positive.

For A, =1, (31) is the correct expression for phonon focusing. In the literature,
phonon focusing is usually calculated by a Monte Carlo technique [31] where the
phonon directions are chosen at random, and Lambert’s cosine law is accounted for
by a weight factor proportional to the cosine of the angle of the k vector. We note
from (31) that this is incorrect in the anisotropic case. Rather, it is evident from the
factor v, that the cosine of the group velocity angle appears. A second problem of
the usual Monte Carlo technique is that the relative weights of the polarizations are
not known. So they were approximated by Debye densities of states [32].
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All of these difficulties can be avoided if (31) is evaluated properly. For this
purpose we replace the k sum by an integral and use the fact that

v,, 0k, = (8w /Bk,)dk, = dw. (32)

This automatically takes care of the generalized Lambert’s Jaw, and we obtain
h 3 2
I, ety = s [ don()e? Lo Eaate s 33)

The s, integration is taken over the extremal cross sections of the three polarization
sheets of the slowness surface., Their relative sizes determine the relative weights of
the polarizations exactly.

We evaluate the sy integral for given w by scanning s, and s,. This reduces
the scatter of the data in comparison with a2 Monte Carlo technique. Moiré patterns
are avoided by adding small random vectors to the selected s;. During the scan, the
results are sorted into an z—y histogram defined by the B(z, y).

For monochromatic phonons, the histogram reflects directly the flux pattern
absorbed from the solid. More or less the same is expected for heat pulses, because
Ay (w, s;) does not depend strongly on w. So we can predict the outcome of heat
pulse transmission experiments complementary to those of Sherlock et af 8], with
specified propagation direction in the solid, and the full solid angle on the helium
side. Some experiments with a fixed normal incidence on the solid side have been
reported [33]; the full angular distribution will be published shortly [34].

Figure 5 shows the predicted flux pattern for Si (001) under various conditions.
All three polarizations were added together here. The lateral dimensions of the plots
are 1.25D, where D is the crystal thickness, and the grid width is D/40. The relative
vertical scale factors are 1, 6, 2 and 300 for (a), (b), (¢) and (d), respectively.

Figure 5(z) is the focusing pattern, or alternatively, the black-body case, with
A, = L. This is shown for comparison. In figures 5(b) and (c) we assumed a layer
with complex elastic constants and density, respectively (dw = 1 km s™!, tan 6 = I).
In both cases the critical cone channelling leads to a ring shaped halo with pronounced
maxima mainly on the ST ridges (diagonal lines in figure 5). As mentioned before,
this phenomenon disappears for thicker layers, around dw = 3 km s~!,

Comparison of figure 5(b) with figure 5(c) shows that the absorption at normal
incidence is still reduced, although this effect is less pronounced than in figure 2. So
it is still possible to distinguish elastic and dynamic losses experimentally. One should
keep in mind, however, that the node of the elastic strain (see section 6) exists only
at smooth surfaces. So the effect for elastic losses can be masked by roughness in an
experiment.

It is interesting to compare these results with the pattern expected for direct
acoustic transmission (see figure 5(d)). The most pronounced feature is the complete
absence of the FT ridges parallel to the cubic axes in the surface. These have
polarizations nearly paralle] to the surface and hence do not couple to the helium.
Clearly, the angular distribution on the solid side can be used as a ‘fingerprint’ of the
transport mechanism.

While we have concentrated so far on the angular distribution of the absorbed
or emitted phonons we wish to discuss briefly also the frequency and thickness
dependence.
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Figure 5. Time-integrated flux patterns on an Si (001) surface due to a point source on
the far face of the crystal: (@) the focusing pattern alone; (&) the fux absorbed in a layer
with elastic losses; {c) with dynamic losses and (d) for direct (Khalatnikov) transmission.

8. Frequency and thickness dependence of the absorption coefficients

The frequency and thickness dependence of the absorption coeflicients determines
the variation of the Kapitza resistance with temperature. If the bottleneck on the
solid side is strong enough, as suggested by the experiments, then both (6) and (10)
reduce to the same expression

Q= / dwW,(w)(8n(w, T) [OTY(T, - T,). 34)

Therefore we restrict ourselves here to a discussion of W, (w). According to (3) and
following the reasoning of the last section we can write this as

1

5
W(w) = e5w° ) / a3y Ay (w, 8p)- (35)

The sy integration is done in the same way as before, but without sorting into a
histogram. For a better overview we have not plotted W () directly but normalized
to the black-body case W, with A, = 1. W (w)/W,, can be viewed as the angular
average of the absorption coefficient. This quantity is displayed as a function of dw in
figure 6. We have again assumed Si (001), and a layer with the same absolute values
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Figure 6. Angular average of absorption coefficient versus dw of the layer. The upper
frequency scale is valid for a layer thickness d = 1.6 nm.

of the material parameters, but with tan é = 1 for elastic losses, dynamic losses, or
both. For convenience, we have added a scale for the frequency f = w /2% (upper
abscissa) corresponding to a thickness of 1.6 nm.

We see in figure 6 that the absorption coefficient rises nearly linearly with
frequency, and then saturates. For the Kapitza conductance this implies a 7% law at
low temperatures, and a T3 law at higher temperatures, as observed experimentally
[3]. So the underlying assumption of a frequency independent loss angle seems to
be appropriate. The crossover {frequency depends on the layer thickness and the
various parameters entering the problem. Here we obtain, e.g. for d == 1.6 nm,
crossover frequencies of 600 GHz (elastic), 200 GHz (dynamic), and 180 GHz (both),
corresponding to temperatures of 7.5 K, 2.5 K, and 2.2 K respectively. The last case
is closest to the experimental value of roughly 1 K.

So the properties of W, alone agree well with experiment, suggesting that
W, > W, is fulfilled experimentally. It remains to investigate whether this is also
true theoretically for the mechanism of evanescent wave absorption.

9, Ratio of inner and outer Kapitza resistance

Our mode] seems to be useful as far as the calculation of the inner Kapitza resistance
is concerned. For the outer resistance this is not so clear. In the helium, phonons
have much shorter wavelengths, so that the evanescent waves vary rapidly in space as
well. So the assumption of locality can be questioned, and also the assumption of 2
flat surface. Nevertheless it is worthwhile to see how far one can proceed with these
simple assumptions.

The ratio between the inner and outer resistances is determined by
W, (w)/W,(w). We have calculated this ratio according to (35) for Si (001) at
dw = 2 km s~! for various sets of parameters and display the results in table 1.
Besides the loss angles of the elastic constants and density of the layer we have also
varied the magnitudes of these material parameters which we scale with respect to
the silicon values by a factor F. In some cases we have added a solid helium layer
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Table L Ratio of inner and outer Kapitza resistance, Wy /W, and average flux
absorption coefficient for the solid side, W./Wy, at dw = 2 km s~1. Parameters are
the loss tangents of elastic constants and mass density (lan é; and tan §,), a reduction
factor for the material parameters with respect to silicon (F), and the presence of a
solid helium layer (SHL).

tan 8. tan §, F SHL Wha/Ws W/ Wy
1 0 1 no .60 031
0 1 1 no 0.091 0.67
i 1 1 no 0.26 072
1 0 025 no 53 0.13
0 1 025 no 0.034 0.27
1 1 0.25 no 20 034
1 0 1 yes 0.77 031
0 1 1 yes 0.27 0.67
1 I 1 yes 0.34 0.72
i a 025 vyes 6.6 0.13
0 ] 0.25  yes 0.087 0.28
1 1 025  yes 25 0.34

(SHL) with dywy, = 1 km s~! on top of the defect layer. This yields a somewhat better
matching of the evanescent waves and so improves the bottleneck to the solid.

Besides the resistance ratio W, /W, we show also the average absorption
coeflicients, W, /W, (see the previous section). Values around 50% are to be expected
from experiments. It is obvious from table 1 that large values for W, /W, i.e. strong
bottlenecks, can be obtained in some cases, and substantial W, /W, values in other
cases. In the last line we have found a trade-off which yields the right order of
magnitude for both quantities. But we were not able to find a really convincing set
of parameters where both W, /W, and W, /W, were large enough to account for the
experiments.

10. Conclusions

We investigated the consequences of a model where the Kapitza transport is caused
by a thin surface layer whose phonon scattering or absorption properties are
phenomenologically described by complex elastic constants and complex mass density.
By including the backscattering of phonons we find that the Kapitza resistance can
be expressed as a series connection of an inner resistance ascribed to the layer-
solid interface and an outer resistance ascribed to the layer-helium interface. Most
experimental findings could be explained if the inner resistance were to dominate,
Unfortunately, the interaction of the layer via evanescent waves inherent in this model
is numerically not quite strong enough to lower the outer resistance sufficiently.

Improvements may be achieved by including the effects of the rotons and of the
possible roughness of the layer surface. Furthermore it might be unavoidable to
study microscopic possibilities for a direct, non-local interaction of the layer with the
helium, e.g. by van der Waals forces.
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