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Kapitza conduction by thin lossy surface layers 
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t Fakultlt fur Physik E10, Technische UniversiPl Miinchen. D-8046 Garching, Federal 
Republic of Germany 
$ Instilut de Mimtechnique, UnivenitO de Neucldlel, M-20M) NeucUlel, Switzerland 
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AbslreeL W mnsider the Kapilza conductance due to absorplion and emission of 
phonons by a lossy surface layer which has complex elastic constanll and/or complex 
mass density. We find a series connection of two heat resistances, one between the 
layer and the solid. and another one between the layer and the helium. A propagalor 
matrir formalism is used Lo calculate Ihe phonon absorption mefficiens, and hence the 
Kapitza conductance, as a function of angle, fmquenry and layer thickness in the limil 
of mnlinuum acoustiLs with anisotropy. ?lie resulting conductance i s  B q e  enough la 
accounl for the Kapitza anomaly. Most experimental details a n  be explained it the 
heat resistance on the solid side is assumed Lo dominate over lhal on Ihe helium side. 
Theoretically we find that both are of the same order a1 least. 

1. Introduction 

The Kapitza resistance for heat transport between liquid helium and solids has 
been a topic of discussion for more than fifty years 111. The transport by acoustic 
phonon transmission proposed by Khalatnikov [2] fails to explain the observed large 
thermal conductance [3] and the strong transmission of phonon pulses [4,5]. This 
fact is commonly referred to as the Kapitza anomaly. Haug and Weiss [6] and, 
independently, Peterson and Anderson [7] (HWPA) suggested that the Kapitza anomaly 
may be accounted for by complex elastic constants of the solid, which provided a 
phenomenological model for scattering or absorption of phonons. As a consequence 
of this, the total reflection of the helium phonons at angles outside the critical cone 
is no longer complete because the evanescent waves in the solid are attenuated. 
Although this effect Seems to be small it leads to a very effective additional channel 
of heat transfer because of the large density of states in helium. 

This model was qualitatively confirmed by angular distribution measurements in 
helium by Sherlock and co-workers [S] who observed the critical cone near normal 
incidence and an additional background at larger angles which carried most of the heat 
flow. But there were still two major objections to the HWPA model: (i) The imaginaly 
parts required to produce a sufficiently large Kapitza anomaly were comparable to the 
real parts of the elastic constants. This appeared to be unphysically large in view of 
ballistic phonon propagation observed in the pulse experiments. (ii) The amplitudes 
of the evanescent waves depend on the impedance mismatch. Therefore the resulting 
Kapitza conductance should depend on the helium pressure, on solidification [9, lo], 
on the replacement of the helium by H, D [ll], or even Ar [IO]. and on the phonon 
frequency [5]. None of these effects could be found experimentally. 
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New experiments have since shown that the Kapitza anomaly is absent at clean 
surfaces prepared in sifu either by cleaving [12,13] or by laser annealing [14]. This 
means that the anomaly is caused by surface imperfections, presumably adsorbed 
water and residual gases. In further experiments the clean surfaces were re- 
contaminated in a controlled manner by gold atoms 1151, and it turned out that 
less than a monolayer was sufficient to restore the Kapitza anomaly. Similar results 
were obtained with a coverage of water molecules [la]. 

These coverages were observed to cause a change from specular reflection to 
more diffuse scattering at the surface without adjacent helium. With helium, the 
diffuse part was transmitted while the specular part remained unaffected. The Same 
observation had been made on ‘real’ surfaces by many authors [17,13]. So the Kapitza 
anomaly is clearly related to surface scattering or absorption, and the scattered or 
re-emitted phonons seem to go preferentally into the helium. 

The HWPA model can be adapted to these observations by modelling the adsorbate 
as a thin layer of an effective lossy medium on the surface. Although this is a crude 
simplification it should be not too far from reality as long as the mean distance 
between adatoms is less than a phonon wavelength. For such a disordered layer it 
seems no longer unphysical to assume a rather high absorption or scattering strength, 
so that real and imaginary parts of the elastic constants may indeed be of the same 
order. Moreover, only a thin layer is required for the Kapitza anomaly to occur 
because of the short penetration depth of the evanescent waves in the solid. Even if 
the layer 0; thinner than the penetration depth, we still find appreciable absorption, 
see section 9. So difficulty (i) can be removed. 

As an alternative model, Kinder 1181 had made the specific assumption of two- 
level systems (ns) on the surface, similar to those observed in glasses 1191. These 
w were assumed to interact with the helium, not via evanescent waves, but directly 
by the deformation potential. The heat exchange due to absorption and re-emission 
of phonons of the solid and of the helium by the TLS was strong enough to agree 
with experiments. The same absorption and re-emission could also be responsible for 
the apparent surface scattering. 

A key argument was that even a small deformation potential allows a very fast 
relaxation into the helium because of the large density of states. If this relaxation 
is faster than that into the solid, the diffusely re-emitted phonons will be ‘sucked‘ 
into the adjacent helium, as observed in the pulse experiments. Also, there will be 
a bottleneck between the ns and the solid which dominates the heat transfer. This 
provides a natural explanation for difficulty (ii), the observed independence of the 
Kapitza resistance from all helium properties. 

Later we have pointed out that the ?LS could be described by a lossy surface layer 
in the same way as discussed above [ZO], if the expression of Jiickle ef a1 I211 was used 
for the imaginary parts of the elastic constants. In fact, the only remaining difference 
from a layer-HWPA model was the direct interaction with the helium. So the H W A  
model must yield a similar bottleneck to the w model if the indirect interaction via 
evanescent waves is strong enough. 

In the present paper we wish to show that this expected bottleneck is a general 
consequence of backscattering which had been ncglected by W W A  [6]. If we take 
backscattering into account we find essentialy two Kapitza resistances in series, an 
outer resistance between the helium and the layer, and an inner resistance between 
the layer and the bulk solid. 

The properties of both resistances can be found by calculating the absorption 
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coefficients as functions of angle, polarization, frequency, and layer thickness. For this 
purpose we have used a propzgator matrix formalism neating the two acoustic half 
spaces with the lossy intermediate layer exactly. We present numerical results not only 
for the case of complex elastic constants corresponding to defects with deformation 
potential coupling, but also for the case of complex mass density corresponding to 
mass defect scattering. 

We find that the inner resistance between the layer and the solid has properties 
which agree well with the existing experiments. So this indeed seems to be the 
bottleneck. On the other hand we also get the Same magnitude for the outer 
resistance. So backscattering should clearly not be neglected, but the evanescent 
wave absorption may not be the only interaction mechanism with the helium. 

2. Angular distribution of scattered or re-emitted phonons 

The complex elastic constants are a macroscopic model for various microscopic 
processes which derive energy from an incident wave by scattering or absorption. This 
energy' is scattered or re-emitted into other modes whose frequencies may be the same 
(scattering) or may have changed (absorptionlre-emission). In our present context 
these modes are the phonons of the bulk solid on one hand, and, via evanescent 
waves, the phonons of the helium on the other hand. The rotons will be neglected for 
simplicity. The energy derived from an incident helium phonon does not necessarily 
contribute to the heat transfer because it has a finite probability of being scattered 
back into another helium phonon. Similarly, phonons absorbed from the solid side can 
be backscattered into the solid. To evaluate the backscattering process quantitatively 
we need not only the absorption but also the emission probabilities for all modes of 
the helium and the solid. 

The scattered or absorbed flux varies across the thickness of the layer, particularly 
in the case of evanescent waves. Therefore, in principle, the contribution to the 
backscattered flux should be calculated for each volume element separately and then 
summed over these elements. In practice, only the average of all modes of the solid 
and the helium together is relevant to the problem, as will be derived in the next 
section. This average varies only weakly, however, as long as the bottleneck on the 
solid side is not extreme. Thus, the numerial results are not significantly altered, 
and we have treated here the absorption of the layer as a whole for simplicity. 

Our macroscopic approach allows us to calculate only the energy flux absorption 
of the layer for all phonon modes of the solid and the helium. The emitted flux 
distribution can he obtained in the following way. 

The use of macroscopic complex elastic constants and mass density is only 
meaningful if the response of the medium is suficiently local. This implies that 
the underlying microstructure causing the scattering or absorption has a characteristic 
length scale which is shorter than the phonon wavelength. Likewise the Fourier 
transform of the microstructure has a distribution which is broader than the length of 
the phonon wave vector. This means that momentum selection rules are not obeyed 
during the scattering or absorption processes. There remain only weak polarization 
selection rules which can be neglected in the present context as we do not expect 
any observable consequences. So the pattern re-emitted at a given frequency has 
always the Same angle and polarization dependence, regardless of which phonon had 
been absorbed. Thus, the total flux pattern at this frequency, re-emitted from all 
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absorbed phonons in thermal equilibrium, is also the same. But this total pattern is, 
by detailed balance, the same as the absorption pattern. So the flux re-emitted at 
a given frequency has always the same dependence on angle and polarization as the 
flux absorption at the same frequency. 

Before we actually calculate the flux absorption we wish to discuss the 
consequences of the phonon backscattering for the Kapitza conduction. 

H Kinder und K Weirs 

3. Kmpitza conduction including backscattering 

The energy flux absorbed from a single incident phonon with wave vector k is given 
bY 

(I: = (tlw,/Qi)~LlrAL (1) 

where the index i stands for either helium (h) or solid (s), ai is the normalization 
volume, vLLk is the normal component of the goup  velocity, A: is the flux absorption 
coelficient of the layer, and k is meant to include both wave vector and polarization 
index. 

In general, the flux absorbed at frequency w is re-emitted in a distribution 
f ( w ,  w‘)  of frequencies w’. Conservation of flux requires 

dw‘f(w,w’) = 1. (2) I 
As discussed in the previous section, the angular and polarization distribution of 
the phonons re-emitted at w’ is the same as that of the flux absorption at w‘. So 
the normalized angular and polarization distribution re-emitted into medium j at 
frequency w‘is given by r l ~ , / [ r . r / ~ ( w ‘ ) + w , ( w ~ ) ] ,  where we have used the abbreviation 

The symbol Cw,=w, denotes the summation over the surface of constant frequency 
U’, so that Jdw‘CWh,,, I E,. For the evaluation see sections 7 and 8. 

Thus, the flux pattern re-emitted into medium j due to a single phonon of 
frequency w incident from medium i is 

ViL = d.f (w, ,  U,’ )d,, /[l.Vdw,,) + lV,(W,, )I. (4) 

In the Kapitza problem the incident phonons have Bose-Einstein distributions, 
n(w, TJ, and the net heat current due to all phonons ahsorbed from the helium 
and re-emitted into the solid, and vice versa, is obtained by summation of (4): 

While the Wi(w) will be calculated later in this paper, the distribution function 
f(w, w’ )  is not h o w n  in general. But we can discuss two limiting cases, elastic 
scattering on one hand, and full inelastic thermalization on the other. 
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In the first case of elastic scattering we, have simply f ( w ,  w' )  = 6(w,  U'), so 
that, for ITh - T,I < T ,  

For simplicity we have assumed that the absorption coefficients Ai  are independent 
of temperature. The generalization is obvious. We see that the heat flux is essentially 
determined hy two Kapitza resistances in series, one for the helium side and one for 
the solid side. 

In the second case the re-emitted spectrum is assumed to be fully thermalized 
to an intermediate temperature T,. The flux re-emitted into each outgoing phonon 
mode is then 

4 w ' ,  T ) &  (7) 

and the re-emitted phonons have no memory of the incident frequencies, Le. the 
distribution function f ( w ,  w') I f ( w ' )  does not depend on U. By summing (4) over 
all incident phonons of both half spaces and comparing the result with (7) we find 

f( W ' )  = n (U',  q) [ wh( W')  + lvs( W r ) ] /  / d W  [ ?L( W , Th wh(w ) + 11(w I c) w,( W ) ]  . 
(8) 

In steady state, T, adjusts itsel€ so that the flux is conserved, that is, equation (2) 
holds. So we obtain an implicit equation defining T, by integration of (8) with respect 
to w'. For ITh - T,I << T this equation can be easily solved 

Using (9), (8) and ( S ) ,  we get for the net heat current in the case of full thermalization 
after some algebra 

Here we have a true series connection of an inner and an outer Kapitza resistance., 
while in the case of elastic scattering, equation (G), the series connection is made for 
each frequency separately. 

If one of the resistances is much larger than the other, it will dominate the overall 
Kapitza resistance. Therefore, the inclusion of hackscattering leads to the remarkable 
fact that any changes on the helium side have no influence if the resistance of the 
solid side dominates. To examine whether this is really the case for our present 
model of coupling by evanescent waves we must explicitly calculate the absorption 
coefficients. We used a concise method to solve the acoustics problem which will be 
presented in the next section before discussing the various numerical results. 
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4. Acoustics in layered anisotropic media 

Anisotropy of aystals and focusing effects play an important role in all phonon 
propagation experiments. Therefore we wish to calculate the absorption coefficients 
of the dissipative layer for anisotropic media of arbitrary surface orientation. For 
this purpose we use the propagator matrix approach which has been developed in 
seismologr 1221. Because we arc applying it here to a phonon problem for the first 
time, we shall give a brief outline. 

We start with the Fourier transform of the homogeneous equation of motion for 
each medium, the solid, the layer, and the helium: 

i, j = 1,2,3 (11) 
2 - pw ui = ik.7.. J $1 

where p is the mass density which may be complex, ui is the displacement vector, kj 
is the wave vector, and rij is the stress tensor. The index for the different media is 
omitted here. We adopt the convention of summing over repeated indices. Hooke’s 
law for each medium is 

i = 1,2,3 
i =4,5 ,6  

with the elastic constants cijk, which may in general be complex as well. The parallel 
component of the wave vector is conserfed at the plane boundaries of the layer. 
Therefore the wave fields in each of the three media will be linear combinations of 
solutions with the Same bll. This bll must always be real everywhere, because it is 
real for the incident wave. Paditionally, one finds solutions of (11) and (12) for a 
given kll by eliminating all components of rij. This yields the Christoffel equation 
whose determinant is a sixth-degree polynomial in k,, the normal component of the 
wave vector. In principle, the zeros of the polynomial can be found. In practice, the 
coefficients of the polynomial fill pages with complicated expressions which are not 
well suited for numerical calculations [23]. It is much more convenient to transform 
the task into an eigenvalue problem. 

This can be achieved by eliminating only the components of T~~ with i, j = 1, 2 
while keeping the normal stresses T ~ ~ ,  i = 1,2,3, as independent variables. Thereby 
we have chosen the z3 axis as the surface normal. This implies klla = 0 and 
k,, = k,, = 0. Then one obtains from (11) and (12) 

In addition, there remains for the third component of (12) 

lbgether, (13) and (14) form a set of six homogeneous linear equations for the six 
variables U; and ri3. We introduce the motionstress vecmr 1221 
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and collect all factors of k, on the right-hand side. Then (13) and (14) take on the 
form 

A . . f . - B , . f .  ‘1 1 - ‘1 I S L  i, j = 1 , .  .. , 6  (16) 
where we have introduced the slowness 8 = q / w .  The coefficients are given by 

j = 1,2,3 j = 4,5,6 

E : * = v  

- SI11 s 0 Sill s 0- 

s p  0 s SI12 0 s 
SL3 0 0 -s13 0 0 
0 0 0 0 0 0 
0 0 0  0 0 0  

- - p  0 0 - p  0 0. 

(21) i = 1 ,  ..., 6. 
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5. Calculation or the absorption and transmission coeRicients 

Now that the eigenvalue problem is solved for given sII, we obtain the general wave 
field in each medium as a linear combination of the corresponding eigenmcdes 

H Kinder and K Ueiss 

f j (z)  = Ei,exp(iwsL,z)w, E E i o A , p ( z ) w p  (22) 

where wB are the amplitudes of the eigenmodes in the linear combination and 
A,&) I 6,8 exp(iwsL,z) is the so-called phase matrix [Z]. 

The motion-stress Vector f must be continuous across the boundaries. We 
introduce the indices s, I, and h for the solid, the layer, and the helium, respectively, 
and we denote the boundaries by z = zE and z = zh, so that the layer thickness is 
d = zs - zh. Then we can write down the bounday conditions 

Eliminating the amplitudes of the layer, wk, from (237) and (2%) yiclds 

E~,A",(zJw'p = P!j(z8 - zh)EqoALC1(zh)w$ (24) 

where we have used the propagator matrix of the layer defined by 

P!.(z$- ' J  zh) = E~,A~~(. ,)A~:'(~~)E' = El,exp(iws,,d)E;:. (25) 

The Same procedure can also be applied to multiple layers by multiplying the 
corresponding propagator matrices. We have made use of this possibility here to 
study the influence of an additional layer of solid helium, as will be briefly discussed 
in section 9. 

Equation (24) is a linear system which couples the amplitudes of the modes in 
both half spaces. They must be sorted for incident and outgoing directions in order 
to obtain transmission and reflection coefficients. 

Sorting of propagating bulk modes with real sL is done with respect to the sign 
of ugl. The simplest way to obtain this quantity in the present context is via the 
normalized energy flux of the mode: 

' U g h  = ( I / / % )  w%4+,,o~ (26) 

where the summation index i runs from 1 to 3, and the E;, are normalized according 
to (20). p, denotes the density of the medium to which the mode belongs. Sorting 
of evanescent waves with complex sL is done with respect to the sign of Im{sL,?. 

Equation (24) can now be rearranged so that the terms with incident and outgolng 
modes are placed on the right- or left-hand side, respcctively. Further, the phase 
matrices multiplying w;1 and w$ can be omitted because we are interested only 
in the absolute values of the transmission and reflection coefficients. These are 
eventually obtained by setting one of the incident amplitudes to unity while putting 
all others to zero, and then solving the inhomogeneous linear system for the outgoing 
amplitudes. We have done this numerically, simultaneously for all incident modes of 
the solid (a = 1,2,3) and the incident longitudinal mode of the helium (a = 4). 
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We denote the resulting amplitude coefficients for transmission or reflection by a,@ 
where p = 1,2,3,4 indicates the outgoing modes. The corresponding energy flux 
coefficients are then given by 

I(,@ = ( Ppv,,/3/P,v9,, )la,plZ (27) 

without summing over a or ,B. The energy flux is conserved if there is no dissipation, 
and I(,@ = 1 can then serve as a numerical test. With dissipation in the layer, 
we define the absorption coefficient of the a th  incident mode as 

4 

'Ib gain insight into the various phenomena, we will give some numerical examples 
for the absorption and transmission coefficients in the following sections. First we 
concentrate on the sII dependence. 

6. Dependence of transmision and absorption coefficients on .gll 

It is useful to study the behaviour of the transmission and absorption coelficients as 
a function of the parallel slowness, sII, because it is conserved at the interfaces. This 
way the effects of mode conversion become more obvious. In all numerical examples 
we used p = 0.14 g and v = 240 m s-' for the liquid helium [24]. For the solid 
we have always chosen silicon with p = 2.331 g c,, = 1G7.5 GPa, c , ~  = 65 GPa 
and cM = 80.1 GPa [25]. 

The formalism works equally well for all orientations of the surface by rotating 
the fourth-rank tensor c i j k , :  

C i j k l  = RimRjnRkoRlpc,cm,.pa, (29) 

where the Ri, are the direction cosines between the original and the rotated basis, 
and the Cymnlr., are the elastic constants in Voigt's notation which we translate to 
tensor indices by the matrix 

In the examples of this section we have picked the orientation by the random numbers 
(83, 64, 25). On this surface we selected for slI a random angle of -GGo with respect 
to the projection of the (100) axis on the surface. 

For the elastic constants of the intermediate layer we have chosen the same 
absolute values as for silicon, but multiplied them by a phase factor, expi6, with 
tan 6 = 1. In the case of m with a deformation potential of A4 = 3 eV [2G] this 
requires a density of states 1211 of N ( E )  = c,tan6/2aM2 = 5 x le3 erg-' an-3. 
For comparison, a value of 8 x lo3* erg-' was obtained for vitreous silica from 
the low-temperature specific heat [27]. In reality, a disordered adsorbate is probably 
softer than silicon and contains more ?1s than bulk vitreous silica. 
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Figure 1. Acoustic transmission coefficient from silicon into helium as a function of 
the psrallel mmponent of Be slowness: (U) wilhout a lossy layer; (b) with a layer of 
dw = 1 I;m s-' ( d  = 0.8 nm at f = 200 GHz) and elastic loses (tan 6 = I). Inset 
corresponding m m  senion of slowness surfaee. 

Figure 1 shows the transmission coefficients according to (27) from the solid into 
the helium as a function of sII for longitudinal (L), fast transverse (IT), and slow 
transverse (ST) phonons. The corresponding angle of propagation in P space can be 
found in the inset which we have drawn for the same orientation, with ugi > 0 for 
incident waves. The angle in helium is displayed in figure I@). 

In figure I(a), the thickness of the layer was actually chosen to be zero. This 
means that the absorbing layer is absent, and we deal with Khalatnikov's direct 
acoustic transmission only. This is interesting in itself because we are studying here 
the anisotropic generalization for the first time. Both transverse modes are now 
transmitted, as expected. An interesting feature is the sharp peak at 0.19 s km-'. 
An analysis of the displacements shows that it is due to a pseudo-surface wave. In 
the present orientation the peak rises to a maximum of about 40% transmission. In 
other directions, it can even rise to 100%. While the phenomenon can be observed by 
ultrasonic techniques 1281 it does not contribute appreciably to the Kapitza conduction 
because the peak is very narrow. 

In figure 1(6), the thickness of the layer is finite. In fact, the results depend, 
according to (25), only on the product of thickness times frequency, dw, as long 
as the loss angle 6 is independent of U. Here we chose dw = 1 lon s-*. This 
corresponds, for example at w / 2 x  = 200 GHz, to a thickness of 0.8 nm. A drastic 
change has occurred at the pseudo-surface wave which is now so strongly damped 
that it causes a dip rather than a peak in the transmission. All other features of the 
curves are only slightly modified. Clearly, the layer does not act as a matching device, 
since the werall transmission remains small. 

While the layer has little influence on the direct transmission, it does lead to 
a strong absorption of phonons. The absorption coefficients according to (28) are 
plotted in figure 2 for incidence from the solid side. In figure 2(0), we used again 
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dw = 1 km s-l, and in figure 2(b) 2 km s-I (16 8, at 200 GHz). Near normal 
incidence, i.e. s - 0, the absorption is relatively weak, particularly for the thiiner 
layer of figure d)ub This can be understood as follows. 

Figum I Absorption mefficient of a layer with elastic loses as a function of sll for (U) 

dw = 1 km s-’ and (6) dw = 2 km s-l. 

Due to the strong acoustic mismatch to the helium, the surface of the layer is 
nearly free, so that the stress is vanishing. Consequently, there is also a node of 
the strain for waves at normal incidence. A sufficiently thin layer on the surface is 
therefore not exposed to strain and cannot dissipate any energy even though its elastic 
constants are complex. However, this argument holds only for normal incidence. 
When the wave fronts are inclined with respect to the surface, the phase varies along 
the layer, straining it in the lateral direction. This leads to the increasing absorption 
at increasing sII. 

Superposed on this general behaviour are peaks at 0.11 s km-I  in figure 2 on 
the curves of both transverse modes. At this point the longitudinal mode has its 
maximum sill so that its group velocity is parallel to the surface and therefore its 
interaction w t h  the layer is strong. This leads also to a dissipation of the transverse 
waves via mode conversion at the surface. The peaks have the Same positions and a 
similar explanation as the halo of ‘critical cone channelling’ observed by Koos a ul 
[ZS] in a different context. 

The thicker layer of figure 2(b) already shows effects of finite thickness. At normal 
incidence there is now significant absorption because the layer feels the increasing 
strain inside the solid away from the node at the surface. The effect is stronger for 
the transverse waves because of their shorter wavelengths. On the other hand, the 
peaks of critical cone channelling are now less significant in comparison with the 
overall level. They disappear completely at dw % 3 km s-l when the overall level 
approaches unity. So the peaks may serve in experiments to estimate the thickness 
of the lossy layer. 
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The effects discussed so far are specific for elastic dissipation by complex elastic 
constants. In the case of a complex mass density, corresponding to dissipation by 
mass-spring systems, we encounter a different situation. This is shown in figure 3 for 
the thinner layer with dw = 1 km s-l (8 8, at 200 GHz), and tan 6 = 1. Now the 
absorption is strong for all angles of incidence, because the complex mass couples 
to the large particle velocity near the surface. A similar behaviour is also obtained 
for rough surfaces without an adlayer [30]. So a vanishing absorption near normal 
incidence may serve in experiments as a specific signature of the elastic dissipation due 
to deformation potential coupling of defects and, at the Same time, as an indication 
that the surface is smooth on the scale of a wavelength. 

I i 3 
I ot ' ' ' ' a05 ' ' ' ' ' 0 1  .I ' ' ' ' 0.15 ' ' ' J ' 0.2 ' 1 I 

Parallel Slowness ( s h )  

Figure 3. layer with complex mass dcnsiry (dynamic Imres) at dw = I km s-l 

Phonons incident from the helium side are absorbed in the layer via their 
evanescent waves. This is s h o w  in figure 4 for ( U )  elastic and (b )  dynamic dissipation, 
with dw = 1 km s-'. The overall absorption is quite small, of the order of 
for (U) and even weaker for (b).  This comes from the large impedance mismatch 
between the helium and the layer. Sharp structures are found at small sII near 
normal incidence. For a better resolution we have redrawn the curves with the 
horizontal scale expanded by a factor of 10, and the vertical scale compressed by a 
factor of 25 (the dotted curves). We find two distinct peaks. The smaller one is due 
to the pseudo-surface wave seen also in figure 1, and the larger one is caused by the 
genuine Rayleigh mode which has an sIl exceeding that of the bulk modes. Note that 
the peak positions in traces (a)  and (b) are slightly shifted against one another, due 
to the different method of attenuation. 

For larger sII, near 2 s km-' on the normal scale of the traces, there is a hump 
where position depends on dw and on 6. An inspection of the wave field shows 
that this is a thickness resonance of the oscillatory part of the evanescent wave which 
arises from the imaginary parts of the elastic constants or the density. 

The peak at the largest s I, near grazing incidence, appears only in the absorption 

course results which eventually falls to zero at 90'. This compares well with the 
experiments by Sherloek ef al [SI who found a nearly constant flux up to angles of 
80' at the lowest heater temperature of 0.9 K 

The sII dependence is not sufficient for analysing experiments with angular 
resolution in the solid. In this case the Kapitza pattern must be translated into 

coefficient. When multiplie d by ugl to yield the flux according to (1). a constant 
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Figure 4. Absorption mefficienl of phonons incident from the helium for (U) elastic and 
(b) dynamic losses. Dolled awes are rescaied as indicated. rile p b  are due to the 
pseudo-surface wave and the Rayleigh mode. 

position space, that is, the phonon focusing effects must be taken into acount. The 
resulting flux pattern on the solid side will be considered next. 

7. Energy flux pattern including focusing in the solid 

An incoherent phonon source, like a heat pulse generator, a tunnel junction, or a 
laser focus, emits phonons into a crystal with vgz pointing away from the source. For 
a given frequency, the occupation numbers n ( w )  of all k states and polarizations are 
approximately equal. Then the flux absorbed by a dissipative layer at the far surface 
of the crystal in a surface element A z A y  at a position z. y is 

The k sum is restricted, so that the surface element is hit, to a range B ( z ,  y) defined 
by the conditions z < v g z D / v g z  < z +AT,  and y < vgy D/v,, < y + A y  where 
D is the crystal thickness, and vga is positive. 

For A ,  3 1, (31) is the correct expression for phonon focusing. In the literature, 
phonon focusing is usually calculated by a Monte Carlo technique [31] where the 
phonon directions are chosen at random, and Lambert's m i n e  law is accounted for 
by a weight factor proportional to the cosine of the angle of the k vector. We note 
from (31) that this is incorrect in the anisotropic case. Rather, it is evident from the 
factor vgr that the cosine of the group velocity angle appears. A second problem of 
the usual Monte Carlo technique is that the relative weights of the polarizations are 
not known. So they were approximated by Debye densities of states [32]. 
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All of these difficulties can be avoided if (31) is evaluated properly. For this 
purpose we replace the h sum by an integral and use the fact that 

v,,dk, = (aw/ak,)dk, = dw. (32) 

This automatically takes care of the generalized Lambert’s law, and we obtain 

Z(z, y)AzAy = - ‘ / d w n ( w ) w 3 x /  d2sl1Acr(w, sll). 
167r3 B(zty)  

(33) 

The sI1 integration is taken over the extrema1 cross sections of the three polarization 
sheets of the slowness surface. Their relative sizes determine the relative wights of 
the polarizations exactly. 

We evaluate the sll integral for given w by scanning s, and sy. This reduces 
the scatter of the data in comparison with a Monte Carlo technique. MoirC patterns 
are avoided by adding small random vectors to the selected all. During the scan, the 
results are sorted into an zy histogram defined by the B(z, y). 

For monochromatic phonons, the histogram reflects directly the flux pattern 
absorbed from the solid. More or less the same is expected for heat pulses, because 
A,(w, sII) does not depend strongly on W. So we can predict the outcome of heat 
pulse transmission experiments complementary to those of Sherlock e2 o[ IS], with 
specified propagation direction in the solid, and the full solid angle on the helium 
side. Some experiments with a lixed normal incidence on the solid side have been 
reported [33]; the full angular distribution will be published shortly [34]. 

Figure 5 shows the predicted flux pattern for Si (001) under various conditions. 
All three polarizations were added together here. The lateral dimensions of the plots 
are 1.250, where D is the crystal thickness, and the grid width is 0/40. The relative 
vertical scale factors are 1, 6, 2 and MO for (a), (b), (c) and (d) ,  respectively. 

Figure S(0) is the focusing pattern, or alternatively, the black-body case, with 
A, E 1. This is shown for comparison. In figures 5(b) and (c) we assumed a layer 
with complex elastic constants and density, respectively (dw = 1 km s-I, tan 6 = 1). 
In both cases the critical cone channelling leads to a ring shaped halo with pronounced 
maxima mainly on the ST ridges (diagonal l i e s  in figure 5). As mentioned before, 
this phenomenon disappears for thicker layers, around dw -- 3 km s-I. 

Comparison of figure 5(b) with figure S(c) shows that the absorption at normal 
incidence is still reduced, although this effect is less pronounced than in figure 2. So 
it is still possible to distinguish elastic and dynamic losses experimentally. One should 
keep in mind, however, that the node of the elastic strain (see section 6) exists only 
at smooth surfaces. So the effect for elastic losses can be masked by roughness in an 
experiment. 

It is interesting to compare these results with the pattern expected for direct 
acoustic transmission (see figure 5(d)). The most pronounced feature is the complete 
absence of the FT ridges parallel to the cubic axes in the surface. These have 
polarizations nearly parallel to the surface and hence do not couple to the helium. 
Clearly, the angular distribution on the solid side can be used as a ‘fingerprint’ of the 
transport mechanism. 

While we have concentrated so far on the angular distribution of the absorbed 
or emitted phonons we wish to discuss briefly also the frequency and thickness 
dependence. 
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Figure 5. Time-integrated flux patterns on an Si (001) surface due to a point source on 
the tar hce of the "yslal: (a) the focusing pattern alone; (b) the flux absorkd in a layer 
with elastic losses; (c) with dynamic losses and (d )  for direct (Khalntnikov) transmission. 

8. kequency and thickness dependence of the absorption coefficients 

The frequency and thickness dependence of the absorption coefficients determines 
the variation of the Kapitza resistance with temperature. If the bottleneck on the 
solid side is strong enough, as suggested by the experiments, then both (6) and (10) 
reduce to the Same expression 

Q = JdwW,(w)(an(w,T)/BT)(T~ - T,).  (34) 

Therefore we restrict ourselves here to a discussion of W,(w). According to (3) and 
following the reasoning of the last section we can write this as 

The sI1 integration is done in the same way as before, but without sorting into a 
histogram. k r  a better overview we have not plotted W,(w) directly but normalized 
to the black-body case WO with A, 1. Ws(w)/Wu can be viewed as the angular 
average of the absorption coefficient. This quantity is displayed as a function of dw in 
figure 6. We have again assumed Si (Ool), and a layer with the same absolute d u e s  
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g 100 
v .  Zr34GHz 4WGHz -6.~~~z--~~....,..~-... -.. 

d * w b / s )  
Figure 6. Angular average of absolprion coefficient wrsus dw of the layer. The upper 
frequenq scale is valid for a layer thickness d = 1.6 nm. 

of the material parameters, but with tan 6 = 1 for elastic losses, dynamic losses, or 
both. Fbr convenience, we have added a scale for the frequency f = w / 2 r  (upper 
abscissa) corresponding to a thickness of 1.6 nm. 

We see in figure 6 that the absorption coefficient rises nearly linearly with 
frequency, and then saturates. For the Kapitza conductance this implies a T4 law at 
IOW temperatures, and a T3 law at higher temperatures, as observed experimentally 
[31. So the underlying assumption of a frequency independent loss angle Seems to 
be appropriate. The crossover frequency depends on the layer thickness and the 
various parameters entering the problem. Here we obtain, e.g. for d = 1.6 nm, 
crossover frequencies of 600 GHz (elastic), 200 GHz (dynamic), and 180 GHz (both), 
corresponding to temperatures of 7.5 K, 25 K, and 2.2 K respectively. The last case 
is closest to the experimental value of roughly 1 IC 

So the properties of W, alone agree well with experiment, suggesting that 
W, > W, is fulfilled experimentally. It remains to investigate whether this is also 
true theoretically for the mechanism of evanescent wave absorption. 

9. Ratio of inner and outer Kapitza resistance 

Our model seems to be useful as far as the calculation of the inner Kapitza resistance 
is concerned. For the outer resistance this is not so clear. In the helium, phonons 
have much shorter wavelengths, so that the evanescent waves vary rapidly in space as 
well. So the assumption of locality can be questioned, and also the assumption of a 
flat surface. Nevertheless it is worthwhile to see how far one can proceed with these 
simple assumptions. 

The ratio between the inner and outer resistances is determined hy 
W h ( w ) / W s ( w ) .  We have calculated this ratio according to (35) for Si (001) at 
dw = 2 km s-' for various sets of parameters and display the results in table 1. 
Besides the loss angles of the elastic constants and density of the layer we have also 
varied the magnitudes of these material parameters which we scale with respect to 
the silicon values by a factor F. In some cases we have added a solid helium layer 
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Table L Ratio of inner and outer Kapim mistance, W,lW,, and average flux 
absorption meEicienl for the solid side. W,/W,, at dw = 2 km 5'. Parameters are 
the loss tangents of elasic mnstanm and m w  density (tan 6, and Ian bo), a reduction 
factor for the material parameres wit11 mpect to silicon (F),  and the presence of a 
solid helium layer (SHL). 

tan 6, tan 6, F SHL W,lW, W,/Wo 
I 0 1 no a60 0.31 
0 1 I no 0.091 0.67 
1 1 1 no 0.26 0.72 
1 0 au no 5.3 0.13 
0 1 a25 no a034 0.27 
1 1 0.25 no 20 0.34 
I 0 1 yg 0.77 0.31 
0 I 1 yes 0.27 0.67 
I 1 1 yes 0.34 0.72 
1 0 0.25 yg 6.6 0.13 
0 I 0.25 yen 0.087 0.28 
1 1 0.25 Yes 2 5  0.34 

(SHL) with dhwh = 1 km s-I on top of the defect layer. This yields a somewhat better 
matching of the evanescent waves and so improves the bottleneck to the solid. 

Besides the resistance ratio Wh/W,, we show also the average absorption 
coefficients, W'J W,, (see the previous section). Values around 50% are to be expected 
from experiments. It is obvious from table 1 that large values for CVh/W,, i.e. strong 
bottlenecks, can be obtained in some cases, and substantial WJW,  values in other 
cases. In the last line we have found a trade-off which yields the right order of 
magnitude for both quantities. But we were not able to find a really convincing set 
of parameters where both W,/ W, and WJW,, were large enough to account for the 
experiments. 

10. Conclusions 

We investigated the consequences of a model where the Kapitza transport is caused 
by a thin surface layer whose phonon scattering or absorption properties are 
phenomenologically described by complex elastic constants and complex mass density. 
By including the backscattering of phonons we find that the Kapitza resistance can 
be expressed as a series connection of an inner resistance ascribed to the layer- 
solid interface and an outer resistance ascribed to the layer-helium interface. Most 
experimental findings could be explained if the inner resistance were to dominate. 
Unfortunately, the interaction of the layer via evanescent waves inherent in this model 
is numerically not quite strong enough to lower the outer resistance suficiently. 

Improvements may be achieved by including the effects of the rotons and of the 
possible roughness of the layer surface. Furthermore it might be unavoidable to 
study microscopic possibilities for a direct, non-local interaction of the layer with the 
helium, e.g. by van der Waals forces. 
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